A 200-million-year delay in permanent atmospheric oxygenation

Nature
  • 1.

    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Bekker, A. & Kaufman, A. J. Oxidative forcing of global climate change: a biogeochemical record across the oldest Paleoproterozoic ice age in North America. Earth Planet. Sci. Lett. 258, 486–499 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Rasmussen, B., Bekker, A. & Fletcher, I. R. Correlation of Paleoproterozoic glaciations based on U–Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet. Sci. Lett. 382, 173–180 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Gumsley, A. P. et al. Timing and tempo of the Great Oxidation Event. Proc. Natl Acad. Sci. USA 114, 1811–1816 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Warke, M. R. et al. The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”. Proc. Natl Acad. Sci. USA 117, 13314–13320 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Luo, G. et al. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci. Adv. 2, e1600134 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 8.

    Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Farquhar, J., Bao, H. M. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2004).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Catling, D., Zahnle, K. & McKay, C. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Hoffman, P. F. The Great Oxidation and a Siderian snowball Earth: MIF-S based correlation of Paleoproterozoic glacial epochs. Chem. Geol. 362, 143–156 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Kasting, J. F. Methane and climate during the Precambrian era. Precambr. Res. 137, 119–129 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Claire, M. W., Catling, D. C. & Zahnle, K. J. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Zahnle, K., Claire, M. W. & Catling, D. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Daines, S. J. & Lenton, T. M. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation. Earth Planet. Sci. Lett. 434, 42–51 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Guo, Q. et al. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37, 399–402 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 20.

    Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Philippot, P. et al. Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event. Nat. Commun. 9, 2245 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 22.

    Killingsworth, B. A. et al. Constraining the rise of oxygen with oxygen isotopes. Nat. Comm. 10, 4924 (2019); author correction 11, 4996 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Ono, S. et al. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hammersley Basin, Australia. Earth Planet. Sci. Lett. 213, 15–30 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Cameron, E. M. Evidence from early Proterozoic anhydrite for sulphur isotopic partitioning in Precambrian oceans. Nature 304, 54–56 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Bekker, A., Karhu, J. A. & Kaufman, A. J. Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precambr. Res. 148, 145–180 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Crockford, P. W. et al. Claypool continued: extending the isotopic record of sedimentary sulfate. Chem. Geol. 513, 200–225 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Coetzee, L. L., Beukes, N. J., Gutzmer, J. & Kakegawa, T. Links of organic carbon cycling and burial to depositional depth gradients and establishment of a snowball Earth at 2.3 Ga: evidence from the Timeball Hill Formation, Transvaal Supergroup, South Africa. S. Afr. J. Geol. 109, 109–122 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3, 647–652 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Koehler, M. C., Buick, R., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. Transient surface ocean oxygenation recorded in the 2.66-Ga Jeerinah Formation, Australia. Proc. Natl Acad. Sci. USA 115, 7711–7716 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic Snowball Earth. Science 281, 1342–1346 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Mills, B. et al. Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nat. Geosci. 4, 861–864 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Bekker, A. & Holland, H. D. Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet. Sci. Lett. 317–318, 295–304 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 36.

    Humbert, F. et al. Palaeomagnetism of the early Palaeoproterozoic, volcanic Hekpoort Formation (Transvaal Supergroup) of the Kaapvaal craton, South Africa. Geophys. J. Int. 209, 842–865 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Clarkson, M. O., Poulton, S. W., Guilbaud, R. & Wood, R. A. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chem. Geol. 382, 111–122 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Izon, G. et al. Multiple oscillations in Neoarchaean atmospheric chemistry. Earth Planet. Sci. Lett. 431, 264–273 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Bekker, A. in Encyclopedia of Astrobiology (eds Gargaud, M. et al.) 1399–1404 (Springer, 2014).

  • 41.

    Coetzee, L. L. Genetic Stratigraphy of the Paleoproterozoic Pretoria Group in the Western Transvaal. MSc thesis, Rand Afrikaans Univ. (2001).

  • 42.

    Visser, J. N. J. The Timeball Hill Formation at Pretoria—a prograding shore-line deposit. Annals Geol. Surv. Pretoria 9, 115–118 (1972).


    Google Scholar
     

  • 43.

    Eriksson, K. A. The Timeball Hill Formation—a fossil delta. J. Sediment. Res. 43, 1046–1053 (1973).

    Article 

    Google Scholar
     

  • 44.

    Eriksson, P. G. & Reczko, B. F. F. Contourites associated with pelagic mudrocks and distal delta-fed turbidites in the Lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa. Sedim. Geol. 120, 319–335 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 45.

    Eriksson, P. G. et al. The Transvaal sequence: an overview. J. Afr. Earth Sci. 16, 25–51 (1993).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Bekker, A., Krapež, B. & Karhu, J. A. Correlation of the stratigraphic cover of the Pilbara and Kaapvaal cratons recording the lead up to Paleoproterozoic Icehouse and the GOE. Earth Sci. Rev. 211, 103389 (2020).

    Article 

    Google Scholar
     

  • 47.

    Hannah, J. L., Bekker, A., Stein, H. J., Markey, R. J. & Holland, H. D. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 225, 43–52 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 48.

    Bekker, A. et al. Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am. J. Sci. 301, 261–285 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 49.

    Schröder, S., Beukes, N. J. & Armstrong, R. A. Detrital zircon constraints on the tectono-stratigraphy of the Paleoproterozoic Pretoria Group, South Africa. Precambr. Res. 278, 362–393 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 50.

    Moore, J. M., Tsikos, H. & Polteau, S. Deconstructing the Transvaal Supergroup. South Africa: implications for Palaeoproterozoic palaeoclimate models. J. Afr. Earth Sci. 33, 437–444 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 51.

    Van Kranendonk, M. & Mazumder, R. Two Paleoproterozoic glacio-eustatic cycles in the Turee Creek Group, Western Australia. Geol. Soc. Am. Bull. 127, 596–607 (2015).

    Article 

    Google Scholar
     

  • 52.

    Krapež, B., Müller, S. G., Fletcher, I. R. & Rasmussen, B. A tale of two basins? Stratigraphy and detrital zircon provenance of the Palaeoproterozoic Turee Creek and Horseshoe basins of Western Australia. Precambr. Res. 294, 67–90 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 53.

    Cui, H. et al. Searching for the Great Oxidation Event in North America: a reappraisal of the Huronian Supergroup by SIMS sulfur four-isotope analysis. Astrobiology 18, 519–538 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 54.

    Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 55.

    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 56.

    Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 57.

    Poulton, S. W. The Iron Speciation Paleoredox Proxy (eds Lyons, T. et al.) (Cambridge Univ. Press, 2021).

  • 58.

    Raiswell, R. & Canfield, D. E. Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments. Geochim. Cosmochim. Acta 60, 2777–2787 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 59.

    Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 60.

    Doyle, K. A., Poulton, S. W., Newton, R. J., Podkovyrov, V. N. & Bekker, A. Shallow water anoxia in the Mesoproterozoic ocean: evidence from the Bashkir Meganticlinorium, Southern Urals. Precambr. Res. 317, 196–210 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 61.

    Alcott, L. J. et al. Development of iron speciation reference materials for paleoredox analysis. Geostand. Geoanal. Res. 44, 581–591 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Johnston, D. T. et al. Placing an upper limit on cryptic marine sulphur cycling. Nature 513, 530–533 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 63.

    Cheney, E. S. Sequence stratigraphy and plate tectonic significance of the Transvaal succession of Southern Africa and its equivalent in Western Australia. Precambr. Res. 79, 3–24 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 64.

    Beukes, N. J. & Gutzmer, J. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Soc. Econ. Geol. Rev. 15, 5–47 (2008).


    Google Scholar
     

  • 65.

    Zerkle, A. L., Claire, M. W., Domagal-Goldman, S. D., Farquhar, J. & Poulton, S. W. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5, 359–363 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 66.

    Izon, G. et al. Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proc. Natl Acad. Sci. USA 114, 2571–2579 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 67.

    Mishima, K. et al. Multiple sulfur isotope geochemistry of Dharwar Supergroup, Southern India: late Archean record of changing atmospheric chemistry. Earth Planet. Sci. Lett. 464, 69–83 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 68.

    Raiswell, R. et al. Turbidite depositional influences on the diagenesis of Beecher’s Trilobite Bed and the Hunsrück Slate; sites of soft tissue pyritization. Am. J. Sci. 308, 105–129 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 69.

    Papineau, D., Mojzsis, S. J. & Schmitt, A. K. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 255, 188–212 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 70.

    Zerkle, A. L. et al. Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542, 465–467 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Articles You May Like

    Eruption Of La Soufrière Volcano Prompts Evacuation Of Caribbean Island
    ‘Let’s make it count’: World leaders, royalty and environmentalists gear up for major climate summit COP26
    Haunting new Hubble photo reveals the wisps of a dying galaxy
    JPMorgan Chase wants to be the commercial bank for ‘green economy’ companies
    Seaspiracy: A Call To Action Or A Vehicle Of Misinformation?

    Leave a Reply

    Your email address will not be published. Required fields are marked *