Epigenetic gene silencing by heterochromatin primes fungal resistance

Nature
  • 1.

    Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Audergon, P. N. C. B. et al. Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science 348, 132–135 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Ragunathan, K., Jih, G. & Moazed, D. Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699 (2015).

    PubMed 

    Google Scholar
     

  • 6.

    Jeggo, P. A. & Holliday, R. Azacytidine-induced reactivation of a DNA repair gene in Chinese hamster ovary cells. Mol. Cell. Biol. 6, 2944–2949 (1986).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Oey, H. & Whitelaw, E. On the meaning of the word ‘epimutation’. Trends Genet. 30, 519–520 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Zhang, K., Mosch, K., Fischle, W. & Grewal, S. I. S. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Zofall, M. et al. RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335, 96–100 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Wang, J., Reddy, B. D. & Jia, S. Rapid epigenetic adaptation to uncontrolled heterochromatin spreading. eLife 4, e06179 (2015).

    PubMed Central 

    Google Scholar
     

  • 11.

    Parsa, J.-Y., Boudoukha, S., Burke, J., Homer, C. & Madhani, H. D. Polymerase pausing induced by sequence-specific RNA-binding protein drives heterochromatin assembly. Genes Dev. 32, 953–964 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Sorida, M. et al. Regulation of ectopic heterochromatin-mediated epigenetic diversification by the JmjC family protein Epe1. PLoS Genet. 15, e1008129 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Yamanaka, S. et al. RNAi triggered by specialized machinery silences developmental genes and retrotransposons. Nature 493, 557–560 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Gallagher, P. S. et al. Iron homeostasis regulates facultative heterochromatin assembly in adaptive genome control. Nat. Struct. Mol. Biol. 25, 372–383 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Calvo, I. A. et al. Genome-wide screen of genes required for caffeine tolerance in fission yeast. PLoS ONE 4, e6619 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Ivanova, A. V., Bonaduce, M. J., Ivanov, S. V. & Klar, A. J. The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nat. Genet. 19, 192–195 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Kudo, N., Taoka, H., Toda, T., Yoshida, M. & Horinouchi, S. A novel nuclear export signal sensitive to oxidative stress in the fission yeast transcription factor Pap1. J. Biol. Chem. 274, 15151–15158 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Castillo, E. A., Vivancos, A. P., Jones, N., Ayté, J. & Hidalgo, E. Schizosaccharomyces pombe cells lacking the Ran-binding protein Hba1 show a multidrug resistance phenotype due to constitutive nuclear accumulation of Pap1. J. Biol. Chem. 278, 40565–40572 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Zofall, M., Smith, D. R., Mizuguchi, T., Dhakshnamoorthy, J. & Grewal, S. I. S. Taz1-Shelterin promotes facultative heterochromatin assembly at chromosome-internal sites containing late replication origins. Mol. Cell 62, 862–874 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Angerer, H. Eukaryotic LYR proteins interact with mitochondrial protein complexes. Biology (Basel) 4, 133–150 (2015).

    CAS 

    Google Scholar
     

  • 22.

    Wang, S. W., Norbury, C., Harris, A. L. & Toda, T. Caffeine can override the S-M checkpoint in fission yeast. J. Cell Sci. 112, 927–937 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Libuda, D. E. & Winston, F. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443, 1003–1007 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Møller, H. D., Parsons, L., Jørgensen, T. S., Botstein, D. & Regenberg, B. Extrachromosomal circular DNA is common in yeast. Proc. Natl Acad. Sci. USA 112, E3114–E3122 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 25.

    Hull, R. M. et al. Transcription-induced formation of extrachromosomal DNA during yeast ageing. PLoS Biol. 17, e3000471 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Wu, S. et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575, 699–703 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Stajic, D., Perfeito, L. & Jansen, L. E. T. Epigenetic gene silencing alters the mechanisms and rate of evolutionary adaptation. Nat. Ecol. Evol. 3, 491–498 (2019).

    PubMed 

    Google Scholar
     

  • 28.

    Thodberg, M. et al. Comprehensive profiling of the fission yeast transcription start site activity during stress and media response. Nucleic Acids Res. 47, 1671–1691 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Yan, Y., Barlev, N. A., Haley, R. H., Berger, S. L. & Marmorstein, R. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6, 1195–1205 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Calo, S. et al. Antifungal drug resistance evoked via RNAi-dependent epimutations. Nature 513, 555–558 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Antequera, F., Tamame, M., Villanueva, J. R. & Santos, T. DNA methylation in the fungi. J. Biol. Chem. 259, 8033–8036 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Wilkinson, C. R., Bartlett, R., Nurse, P. & Bird, A. P. The fission yeast gene pmt1
    + encodes a DNA methyltransferase homologue. Nucleic Acids Res. 23, 203–210 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Stone, N. R. et al. Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. J. Clin. Invest. 129, 999–1014 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Harigaya, Y. et al. Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442, 45–50 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Watson, A. T. et al. Optimisation of the Schizosaccharomyces pombe urg1 expression system. PLoS ONE 8, e83800 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Delerue, T. et al. Loss of Msp1p in Schizosaccharomyces pombe induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes. FEBS Lett. 590, 3544–3558 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Bähler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    PubMed 

    Google Scholar
     

  • 42.

    Tong, P. et al. Interspecies conservation of organisation and function between nonhomologous regional centromeres. Nat. Commun. 10, 2343 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Nerusheva, O. O., Galander, S., Fernius, J., Kelly, D. & Marston, A. L. Tension-dependent removal of pericentromeric shugoshin is an indicator of sister chromosome biorientation. Genes Dev. 28, 1291–1309 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44 (W1), W160–W165 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Diaz, A., Park, K., Lim, D. A. & Song, J. S. Normalization, bias correction, and peak calling for ChIP-seq. Stat. Appl. Genet. Mol. Biol. 11, 9 (2012).

    MathSciNet 

    Google Scholar
     

  • 49.

    Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Phanstiel, D. H., Boyle, A. P., Araya, C. L. & Snyder, M. P. Sushi.R: flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures. Bioinformatics 30, 2808–2810 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Jeffares, D. C. et al. The genomic and phenotypic diversity of Schizosaccharomyces pombe. Nat. Genet. 47, 235–241 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics. 43, 11.10.1–11.10.33 (2013).


    Google Scholar
     

  • 54.

    McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput. Biol. 12, e1004873 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 

    Google Scholar
     

  • 57.

    Lawrence, M. et al. Software for computing and annotating genomic ranges. PLOS Comput. Biol. 9, e1003118 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Fletcher, S. J., Boden, M., Mitter, N. & Carroll, B. J. SCRAM: a pipeline for fast index-free small RNA read alignment and visualization. Bioinformatics 34, 2670–2672 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Braun, S. et al. The Cul4-Ddb1(Cdt)2 ubiquitin ligase inhibits invasion of a boundary-associated antisilencing factor into heterochromatin. Cell 144, 41–54 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Woods, A. et al. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93, 491–500 (1989).

    PubMed 

    Google Scholar
     

  • 63.

    Pidoux, A. L. & Armstrong, J. The BiP protein and the endoplasmic reticulum of Schizosaccharomyces pombe: fate of the nuclear envelope during cell division. J. Cell Sci. 105, 1115–1120 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Articles You May Like

    Blue Origin considers entering commercial space station business
    Amazon says it didn’t build the ‘Prime bike’ and tells Echelon to stop selling it
    Silicon Valley IPOs are being celebrated in parking lots and conference rooms, as CEOs navigate pandemic and wildfire smoke
    A frozen land goes green as Earth warms
    L3Harris gets $119 million Space Force contract for deep-space telescopes

    Leave a Reply

    Your email address will not be published. Required fields are marked *