Near-perfect photon utilization in an air-bridge thermophotovoltaic cell

Nature
  • 1.

    Amy, C., Seyf, H. R., Steiner, M. A., Friedman, D. J. & Henry, A. Thermal energy grid storage using multi-junction photovoltaics. Energy Environ. Sci. 12, 334–343 (2019).

    Article 

    Google Scholar
     

  • 2.

    Datas, A., Ramos, A., Martí, A., del Cañizo, C. & Luque, A. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion. Energy 107, 542–549 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Lenert, A. et al. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Bierman, D. M. et al. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 1, 16068 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Ungaro, C., Gray, S. K. & Gupta, M. C. Solar thermophotovoltaic system using nanostructures. Opt. Express 23, A1149–A1156 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Rephaeli, E. & Fan, S. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Express 17, 15145–15159 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Harder, N.-P. & Würfel, P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Technol. 18, S151–S157 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Seyf, H. R. & Henry, A. Thermophotovoltaics: a potential pathway to high efficiency concentrated solar power. Energy Environ. Sci. 9, 2654–2665 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Fraas, L. M., Avery, J. E. & Huang, H. X. Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells. Semicond. Sci. Technol. 18, S247–S253 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Bianchi, M., Ferrari, C., Melino, F. & Peretto, A. Feasibility study of a thermo-photo-voltaic system for CHP application in residential buildings. Appl. Energy 97, 704–713 (2012).

    Article 

    Google Scholar
     

  • 11.

    Durisch, W. & Bitnar, B. Novel thin film thermophotovoltaic system. Sol. Energy Mater. Sol. Cells 94, 960–965 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Licht, A., Pfiester, N., DeMeo, D., Chivers, J. & Vandervelde, T. E. A review of advances in thermophotovoltaics for power generation and waste heat harvesting. MRS Adv. 4, 2271–2282 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Zhou, Z., Sakr, E., Sun, Y. & Bermel, P. Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics 5, 1–21 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Ferrari, C., Melino, F., Pinelli, M., Spina, P. R. & Venturini, M. Overview and Status of Thermophotovoltaic Systems. Energy Proc. 45, 160–169 (2014).

    Article 

    Google Scholar
     

  • 15.

    Daneshvar, H., Prinja, R. & Kherani, N. P. Thermophotovoltaics: fundamentals, challenges and prospects. Appl. Energy 159, 560–575 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Sakakibara, R. et al. Practical emitters for thermophotovoltaics: a review. J. Photon. Energy 9, 032713 (2019).


    Google Scholar
     

  • 17.

    Bauer, T. Thermophotovoltaics. Green Energy and Technology Vol. 7 (Springer, 2011).

  • 18.

    Werth, J. J. Thermo-photovoltaic converter with radiant energy reflective means. US patent 3,331,707 (1963).


    Google Scholar
     

  • 19.

    Swanson, R. M. Recent developments in thermophotovoltaic conversion. In 1980 International Electron Devices Meeting 186–189 (IRE, 1980).

  • 20.

    Omair, Z. et al. Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proc. Natl Acad. Sci. USA 116, 15356–15361 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Wernsman, B. et al. Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control. IEEE Trans. Electron Dev. 51, 512–515 (2004).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Fourspring, P. M., Depoy, D. M., Rahmlow, T. D., Lazo-wasem, J. E. & Gratrix, E. J. Optical coatings for thermophotovoltaic spectral control. Appl. Opt. 45, 1356–1358 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Woolf, D. N. et al. High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter. Optica 5, 213–218 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Shemelya, C., Demeo, D. F. & Vandervelde, T. E. Two dimensional metallic photonic crystals for light trapping and anti-reflective coatings in thermophotovoltaic applications. Appl. Phys. Lett. 104, 021115 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Rinnerbauer, V. et al. High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Opt. Express 21, 11482–11491 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Arpin, K. A. et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun. 4, 2630 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Wang, Y. et al. Hybrid solar absorber-emitter by coherence-enhanced absorption for improved solar thermophotovoltaic conversion. Adv. Opt. Mater. 6, 1800813 (2018).

    Article 

    Google Scholar
     

  • 28.

    Nakagawa, N., Ohtsubo, H., Waku, Y. & Yugami, H. Thermal emission properties of Al2O3/Er3 Al5O12 eutectic ceramics. J. Eur. Ceram. Soc. 25, 1285–1291 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Ferguson, L. G. & Dogan, F. A highly efficient NiO-doped MgO matched emitter for thermophotovoltaic energy conversion. Mater. Sci. Eng. B 83, 35–41 (2001).

    Article 

    Google Scholar
     

  • 30.

    Burger, T., Sempere, C., Roy-Layinde, B. & Lenert, A. Present efficiencies and future opportunities in thermophotovoltaics. Joule https://doi.org/10.1016/j.joule.2020.06.021 (2020).

  • 31.

    Burger, T., Fan, D., Lee, K., Forrest, S. R. & Lenert, A. Thin-film architectures with high spectral selectivity for thermophotovoltaic cells. ACS Photon. 5, 2748–2754 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Mahorter, R. G., Wernsman, B., Thomas, R. M. & Siergiej, R. R. Thermophotovoltaic system testing. Semicond. Sci. Technol. 18, S232 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Green, M. A. et al. Solar cell efficiency tables (Version 55). Prog. Photovolt. Res. Appl. 28, 3–15 (2020).

    Article 

    Google Scholar
     

  • 34.

    Crowley, C. J. Thermophotovoltaic converter performance for radioisotope power systems. AIP Conf. Proc. 746, 601–614 (AIP, 2005).

  • 35.

    Raman, V. K., Burger, T. & Lenert, A. Design of thermophotovoltaics for tolerance of parasitic absorption. Opt. Express 27, 31757–31772 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Peumans, P., Yakimov, A. & Forrest, S. R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Lee, K., Shiu, K.-T., Zimmerman, J. D., Renshaw, C. K. & Forrest, S. R. Multiple growths of epitaxial lift-off solar cells from a single InP substrate. Appl. Phys. Lett. 97, 101107 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Chancerel, F. et al. Epitaxial lift-off of InGaAs solar cells from InP substrate using a strained AlAs/InAlAs superlattice as a novel sacrificial layer. Sol. Energy Mater. Sol. Cells 195, 204–212 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Chen, K., Zhao, B. & Fan, S. MESH: A free electromagnetic solver for far-field and near-field radiative heat transfer for layered periodic structures. Comput. Phys. Commun. 231, 163–172 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Cuevas, J. C. & García-Vidal, F. J. Radiative heat transfer. ACS Photon. 5, 3896–3915 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Forrest, S. R., Leheny, R. F., Nahory, R. E. & Pollack, M. A. In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling. Appl. Phys. Lett. 37, 322–325 (1980).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 42.

    Riben, A. R. & Feucht, D. L. Electrical transport in nGe-pGaAs heterojunctions. Int. J. Electron. 20, 583–599 (1966).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Dupré, O., Vaillon, R. & Green, M. A. Thermal Behavior of Photovoltaic Devices (Springer, 2017).

  • Articles You May Like

    One underdog sector is beating the market this month, but two traders stand divided on its prospects
    NASA selects first human-tended suborbital research payload
    Apple iPhone maker Foxconn wants to become the Android for electric cars with new vehicle platform
    New job listings for Amazon’s internal telemedicine service, Amazon Care, hint at expansion
    2200-Year-Old Cat Geoglyph Emerges Among Peru’s Nazca Lines

    Leave a Reply

    Your email address will not be published. Required fields are marked *