Red blood cell tension protects against severe malaria in the Dantu blood group

Nature
  • 1.

    Malaria Genomic Epidemiology Network. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nat. Commun. 10, 5732 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Williams, T. N. in Advances in Malaria Research (eds Gaur, D., Chitnis, C. E. & Chauhan, V. S.) 465–494 (Wiley, 2016).

  • 3.

    Band, G., Rockett, K. A., Spencer, C. C. & Kwiatkowski, D. P. A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature 526, 253–257 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Ndila, C. M. et al. Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study. Lancet Haematol. 5, E333–E345 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Leffler, E. M. et al. Resistance to malaria through structural variation of red blood cell invasion receptors. Science 356, eaam6393 (2017).

  • 6.

    Sim, B. K., Chitnis, C. E., Wasniowska, K., Hadley, T. J. & Miller, L. H. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264, 1941–1944 (1994).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Mayer, D. C. et al. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1. Proc. Natl Acad. Sci. USA 106, 5348–5352 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Theron, M., Cross, N., Cawkill, P., Bustamante, L. Y. & Rayner, J. C. An in vitro erythrocyte preference assay reveals that Plasmodium falciparum parasites prefer Type O over Type A erythrocytes. Sci. Rep. 8, 8133 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Crick, A. J. et al. Quantitation of malaria parasite-erythrocyte cell-cell interactions using optical tweezers. Biophys. J. 107, 846–853 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    Weiss, G. E. et al. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog. 11, e1004670 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Dahr, W., Moulds, J., Unger, P. & Kordowicz, M. The Dantu erythrocyte phenotype of the NE variety. I. Dodecylsulfate polyacrylamide gel electrophoretic studies. Blut 55, 19–31 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Maier, A. G. et al. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat. Med. 9, 87–92 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Kanjee, U. et al. CRISPR/Cas9 knockouts reveal genetic interaction between strain-transcendent erythrocyte determinants of Plasmodium falciparum invasion. Proc. Natl Acad. Sci. USA 114, E9356–E9365 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Reed, M. B. et al. Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion. Proc. Natl Acad. Sci. USA 97, 7509–7514 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 15.

    Betz, T., Lenz, M., Joanny, J. F. & Sykes, C. ATP-dependent mechanics of red blood cells. Proc. Natl Acad. Sci. USA 106, 15320–15325 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 16.

    Yoon, Y. Z. et al. Flickering analysis of erythrocyte mechanical properties: dependence on oxygenation level, cell shape, and hydration level. Biophys. J. 97, 1606–1615 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Popescu, G. et al. Optical measurement of cell membrane tension. Phys. Rev. Lett. 97, 218101 (2006).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Koch, M. et al. Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion. Proc. Natl Acad. Sci. USA 114, 4225–4230 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Sisquella, X. et al. Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion. eLife 6, e21083 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Tiffert, T. et al. The hydration state of human red blood cells and their susceptibility to invasion by Plasmodium falciparum. Blood 105, 4853–4860 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Sinha, A., Chu, T. T., Dao, M. & Chandramohanadas, R. Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress. Sci. Rep. 5, 9768 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 22.

    Evans, E., Mohandas, N. & Leung, A. Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration. J. Clin. Invest. 73, 477–488 (1984).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Pasvol, G., Weatherall, D. J. & Wilson, R. J. The increased susceptibility of young red cells to invasion by the malarial parasite Plasmodium falciparum. Br. J. Haematol. 45, 285–295 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Mohandas, N., Lie-Injo, L. E., Friedman, M. & Mak, J. W. Rigid membranes of Malayan ovalocytes: a likely genetic barrier against malaria. Blood 63, 1385–1392 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Schrier, S. L., Rachmilewitz, E. & Mohandas, N. Cellular and membrane properties of alpha and beta thalassemic erythrocytes are different: implication for differences in clinical manifestations. Blood 74, 2194–2202 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Park, Y. et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. USA 105, 13730–13735 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Park, Y. et al. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells. J. Biomed. Opt. 15, 020506 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Dai, J., Ting-Beall, H. P. & Sheetz, M. P. The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. J. Gen. Physiol. 110, 1–10 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Lamason, R. L. et al. Rickettsia Sca4 reduces vinculin-mediated intercellular tension to promote spread. Cell 167, 670–683 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Gilson, P. R. & Crabb, B. S. Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int. J. Parasitol. 39, 91–96 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Yoon, Y. Z., Kotar, J., Yoon, G. & Cicuta, P. The nonlinear mechanical response of the red blood cell. Phys. Biol. 5, 036007 (2008).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • 32.

    Nightingale, K. et al. High-definition analysis of host protein stability during human cytomegalovirus infection reveals antiviral factors and viral evasion mechanisms. Cell Host Microbe 24, 447–460 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Pécréaux, J., Döbereiner, H. G., Prost, J., Joanny, J. F. & Bassereau, P. Refined contour analysis of giant unilamellar vesicles. Eur. Phys. J. E 13, 277–290 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Articles You May Like

    Apple falls as strong iPad and Mac sales fail to make up for iPhone decline
    Thanks To Schmidt Futures, The Keeling Curve Lives To Measure CO2 Another Day
    Scientists Just Reported The First Unambiguous Detection of Water on The Moon
    Apple’s weak iPhone sales aren’t a huge problem — people were waiting for the new models
    Your dreams are more complex depending on what stage of sleep you’re in, study finds

    Leave a Reply

    Your email address will not be published. Required fields are marked *