Reverse and forward engineering of Drosophila corneal nanocoatings

Nature
  • 1.

    Nalwa, H. S. Handbook of Nanostructured Biomaterials and their Applications in Nanobiotechnology (American Scientific, 2005).

  • 2.

    Kryuchkov, M., Blagodatski, A., Cherepanov, V. & Katanaev, V. L. in Functional Surfaces in Biology III: Diversity of the Physical Phenomena (eds Gorb, S. N. & Gorb, E. V.) 29–52 (Springer, 2017).

  • 3.

    Peisker, H. & Gorb, S. N. Always on the bright side of life: anti-adhesive properties of insect ommatidia grating. J. Exp. Biol. 213, 3457–3462 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Blagodatski, A., Sergeev, A., Kryuchkov, M., Lopatina, Y. & Katanaev, V. L. Diverse set of Turing nanopatterns coat corneae across insect lineages. Proc. Natl Acad. Sci. USA 112, 10750–10755 (2015).

    ADS 
    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 6.

    Kondo, S. & Miura, T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010).

    ADS 
    MathSciNet 
    PubMed 
    MATH 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Bhushan, B. Springer Handbook of Nanotechnology 4th edn (Springer, 2017).

  • 8.

    Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).

    Article 

    Google Scholar
     

  • 10.

    Büscher, T. H., Kryuchkov, M., Katanaev, V. L. & Gorb, S. N. Versatility of Turing patterns potentiates rapid evolution in tarsal attachment microstructures of stick and leaf insects (Phasmatodea). J. R. Soc. Interface 15, 20180281 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Gemne, G. ontogenesis of corneal surface ultrastructure in nocturnal Lepidoptera. Philos. Trans. R. Soc. Lond. B 262, 343–363 (1971).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Murray, J. D. Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, 2001).

  • 13.

    Markow, T. A. & O’Grady, P. M. Drosophila biology in the genomic age. Genetics 177, 1269–1276 (2007).

    PubMed 
    PubMed Central 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Bernhard, C. G. & Miller, W. H. A corneal nipple pattern in insect compound eyes. Acta Physiol. Scand. 56, 385–386 (1962).

    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Kryuchkov, M. et al. analysis of micro- and nano-structures of the corneal surface of Drosophila and its mutants by atomic force microscopy and optical diffraction. PLoS One 6, e22237 (2011).

    ADS 
    PubMed 
    PubMed Central 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Kryuchkov, M., Lehmann, J., Schaab, J., Fiebig, M. & Katanaev, V. L. Antireflective nanocoatings for UV-sensation: the case of predatory owlfly insects. J. Nanobiotechnology 15, 52 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Stark, W. S. & Wasserman, G. S. Transient and receptor potentials in the electroretinogram of Drosophila. Vision Res. 12, 1771–1775 (1972).

    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Anderson, M. S. & Gaimari, S. D. Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes. J. Struct. Biol. 142, 364–368 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Chandran, R., Williams, L., Hung, A., Nowlin, K. & LaJeunesse, D. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Micron 82, 74–85 (2016).

    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Kaya, M., Sargin, I., Al-Jaf, I., Erdogan, S. & Arslan, G. Characteristics of corneal lens chitin in dragonfly compound eyes. Int. J. Biol. Macromol. 89, 54–61 (2016).

    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Locke, M. The Wigglesworth lecture: insects for studying fundamental problems in biology. J. Insect Physiol. 47, 495–507 (2001).

    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Nickerl, J., Tsurkan, M., Hensel, R., Neinhuis, C. & Werner, C. The multi-layered protective cuticle of Collembola: a chemical analysis. J. R. Soc. Interface 11, 20140619 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Kryuchkov, M. et al. Alternative moth-eye nanostructures: antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors. J. Nanobiotechnology 15, 61 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 24.

    Kim, E. et al. Characterization of the Drosophila melanogaster retinin gene encoding a cornea-specific protein. Insect Mol. Biol. 17, 537–543 (2008).

    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Komori, N., Usukura, J. & Matsumoto, H. Drosocrystallin, a major 52 kDa glycoprotein of the Drosophila melanogaster corneal lens. Purification, biochemical characterization, and subcellular localization. J. Cell Sci. 102, 191–201 (1992).

    PubMed 
    CAS 

    Google Scholar
     

  • 26.

    Karouzou, M. V. et al. Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem. Mol. Biol. 37, 754–760 (2007).

    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Stahl, A. L., Charlton-Perkins, M., Buschbeck, E. K. & Cook, T. A. The cuticular nature of corneal lenses in Drosophila melanogaster. Dev. Genes Evol. 227, 271–278 (2017).

    PubMed 
    PubMed Central 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Cheng, J. B. & Russell, D. W. Mammalian wax biosynthesis. I. Identification of two fatty acyl-coenzyme A reductases with different substrate specificities and tissue distributions. J. Biol. Chem. 279, 37789–37797 (2004).

    PubMed 
    PubMed Central 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Cheng, J. B. & Russell, D. W. Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family. J. Biol. Chem. 279, 37798–37807 (2004).

    PubMed 
    PubMed Central 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Kunst, L. & Samuels, A. L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42, 51–80 (2003).

    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Lin, C. et al. Double suppression of the Gα protein activity by RGS proteins. Mol. Cell 53, 663–671 (2014).

    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta Proteins Proteom. 1751, 119–139 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Clarke, D. T. in Protein Folding, Misfolding, and Disease: Methods and Protocols (eds Hill, A. F. et al.) 59–72 (Humana, 2011).

  • 34.

    Biancalana, M. & Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta Proteins Proteom. 1804, 1405–1412 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Chandra, S., Chen, X., Rizo, J., Jahn, R. & Sudhof, T. C. A broken α-helix in folded α-synuclein. J. Biol. Chem. 278, 15313–15318 (2003).

    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    van der Werf, K. O., Putman, C. A. J., Degrooth, B. G. & Greve, J. Adhesion force imaging in air and liquid by adhesion mode atomic-force microscopy. Appl. Phys. Lett. 65, 1195–1197 (1994).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Global Industry Analysts Nanocoatings — Global Market Trajectory and Analysis https://researchandmarkets.com/reports/4721438/nanocoatings-global-market-trajectory-and (2020).

  • 38.

    Katanaev, V. L. & Kryuchkov, M. V. The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. Biochemistry (Mosc.) 76, 1556–1581 (2011).

    PubMed 
    CAS 

    Google Scholar
     

  • 39.

    Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific ϕC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007).

    ADS 
    PubMed 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Roberts, D. B. Drosophila: A Practical Approach (Oxford Univ. Press, 1998).

  • 41.

    Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012).


    Google Scholar
     

  • Articles You May Like

    First study of its kind reveals how we can slow down propaganda memes online
    In His New Podcast, Alan Alda Champions Science For Curiosity’s Sake
    How You Can Watch Live As NASA ‘Kisses’ An Asteroid That Could Destroy Earth In The 22nd Century
    ESA awards contracts for moon and Mars exploration
    Luxury in the new normal: Leadership and innovation in 2020 and beyond

    Leave a Reply

    Your email address will not be published. Required fields are marked *