Stabilization and operation of a Kerr-cat qubit

Nature
  • 1.

    Cochrane, P. T., Milburn, G. J. & Munro, W. J. Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys. Rev. A 59, 2631–2634 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Mirrahimi, M. et al. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J. Phys. 16, 045014 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Milburn, G. J. & Holmes, C. A. Quantum coherence and classical chaos in a pulsed parametric oscillator with a Kerr nonlinearity. Phys. Rev. A 44, 4704–4711 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Puri, S., Boutin, S. & Blais, A. Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving. npj Quantum Inf. 3, 18 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Puri, S. et al. Stabilized cat in a driven nonlinear cavity: a fault-tolerant error syndrome detector. Phys. Rev. X 9, 041009 (2019).

    CAS 

    Google Scholar
     

  • 6.

    Puri, S. et al. Bias-preserving gates with stabilized cat qubits. Sci. Adv. (in the press); preprint at https://arxiv.org/abs/1905.00450 (2019).

  • 7.

    Guillaud, J. & Mirrahimi, M. Repetition cat qubits for fault-tolerant quantum computation. Phys. Rev. X 9, 041053 (2019).

    CAS 

    Google Scholar
     

  • 8.

    Goto, H. Universal quantum computation with a nonlinear oscillator network. Phys. Rev. A 93, 050301 (2016).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 9.

    Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Vuillot, C., Asasi, H., Wang, Y., Pryadko, L. P. & Terhal, B. M. Quantum error correction with the toric Gottesman–Kitaev–Preskill code. Phys. Rev. A 99, 032344 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, 2006).

  • 17.

    Aliferis, P. & Preskill, J. Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78, 052331 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Tuckett, D. K., Bartlett, S. D. & Flammia, S. T. Ultrahigh error threshold for surface codes with biased noise. Phys. Rev. Lett. 120, 050505 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature http://doi.org/10.1038/s41586-020-2603-3 (2020).

  • 22.

    Frattini, N. E. et al. 3-wave mixing Josephson dipole element. Appl. Phys. Lett. 110, 222603 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Chow, J. M. et al. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys. Rev. Lett. 109, 060501 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Yurke, B. & Stoler, D. The dynamic generation of Schrödinger cats and their detection. Physica B+C 151, 298–301 (1988).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205–209 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Sank, D. et al. Measurement-induced state transitions in a superconducting qubit: beyond the rotating wave approximation. Phys. Rev. Lett. 117, 190503 (2016).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 27.

    Lescanne, R. et al. Escape of a driven quantum Josephson circuit into unconfined states. Phys. Rev. Appl. 11, 014030 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Lescanne, R. et al. Exponential suppression of bit-flips in a qubit encoded in an oscillator. Nat. Phys. 16, 509–513 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Touzard, S. et al. Coherent oscillations inside a quantum manifold stabilized by dissipation. Phys. Rev. X 8, 021005 (2018).

    CAS 

    Google Scholar
     

  • 30.

    Dykman, M. I., Maloney, C. M., Smelyanskiy, V. N. & Silverstein, M. Fluctuational phase-flip transitions in parametrically driven oscillators. Phys. Rev. E 57, 5202–5212 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Wustmann, W. & Shumeiko, V. Parametric resonance in tunable superconducting cavities. Phys. Rev. B 87, 184501 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Siddiqi, I. et al. Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction. Phys. Rev. Lett. 94, 027005 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Wilson, C. M. et al. Photon generation in an electromagnetic cavity with a time-dependent boundary. Phys. Rev. Lett. 105, 233907 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Zhang, Y. & Dykman, M. I. Preparing quasienergy states on demand: a parametric oscillator. Phys. Rev. A 95, 053841 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Wang, Z. et al. Quantum dynamics of a few-photon parametric oscillator. Phys. Rev. X 9, 021049 (2019).

    CAS 

    Google Scholar
     

  • 36.

    Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 37.

    Munro, W. J., Nemoto, K., Milburn, G. J. & Braunstein, S. L. Weak-force detection with superposed coherent states. Phys. Rev. A 66, 023819 (2002).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Dykman, M. I., Bruder, C., Lörch, N. & Zhang, Y. Interaction-induced time-symmetry breaking in driven quantum oscillators. Phys. Rev. B 98, 195444 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Puri, S., Andersen, C. K., Grimsmo, A. L. & Blais, A. Quantum annealing with all-to-all connected nonlinear oscillators. Nat. Commun. 8, 15785 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Goto, H. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network. Sci. Rep. 6, 21686 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 41.

    Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photon. 8, 937–942 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Articles You May Like

    Lego plans to scrap plastic bags and make more ‘bio bricks’
    The Deadliest Venomous Animals In The World
    This New AI Technology Could Prevent Ships From Colliding With Whales
    A low-profile investor who bet on Snowflake eight years ago is up more than $12 billion after IPO pop
    Amazon invests in battery recycling firm started by former Tesla executive

    Leave a Reply

    Your email address will not be published. Required fields are marked *