The superconducting quasicharge qubit

Nature
  • 1.

    Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    ADS 
    MATH 

    Google Scholar
     

  • 2.

    Clarke, J., Cleland, A., Devoret, M. H., Esteve, D. & Martinis, J. Quantum mechanics of a macroscopic variable: the phase difference of a Josephson junction. Science 239, 992–997 (1988).

    ADS 
    PubMed 

    Google Scholar
     

  • 3.

    Devoret, M. H. & Schoelkopf, R. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 4.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 5.

    Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • 6.

    Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    ADS 

    Google Scholar
     

  • 7.

    Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • 8.

    Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • 9.

    Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • 10.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS 

    Google Scholar
     

  • 11.

    Schmid, A. Diffusion and localization in a dissipative quantum system. Phys. Rev. Lett. 51, 1506 (1983).

    ADS 

    Google Scholar
     

  • 12.

    Bulgadaev, S. A. Phase diagram of a dissipative quantum system. JETP Lett. 39, 264–267 (1984).


    Google Scholar
     

  • 13.

    Averin, D. V., Zorin, A. B. & Likharev, K. K. Bloch oscillations in small Josephson junctions. Sov. Phys. JETP 61, 407–413 (1985).


    Google Scholar
     

  • 14.

    Schön, G. & Zaikin, A. D. Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237–412 (1990).

    ADS 

    Google Scholar
     

  • 15.

    Kuzmin, L. S. & Haviland, D. B. Observation of the Bloch oscillations in an ultrasmall Josephson junction. Phys. Rev. Lett. 67, 2890 (1991).

    ADS 
    PubMed 

    Google Scholar
     

  • 16.

    Haviland, D. B. & Delsing, P. Cooper-pair charge solitons: the electrodynamics of localized charge in a superconductor. Phys. Rev. B 54, R6857–R6860 (1996).

    ADS 

    Google Scholar
     

  • 17.

    Penttilä, J. S., Parts, Ü., Hakonen, P. J., Paalanen, M. A. & Sonin, E. B. “Superconductor–insulator transition” in a single Josephson junction. Phys. Rev. Lett. 82, 1004 (1999).

    ADS 

    Google Scholar
     

  • 18.

    Watanabe, M. & Haviland, D. B. Coulomb blockade and coherent single-Cooper-pair tunneling in single Josephson junctions. Phys. Rev. Lett. 86, 5120 (2001).

    ADS 
    PubMed 

    Google Scholar
     

  • 19.

    Corlevi, S., Guichard, W., Hekking, F. W. J. & Haviland, D. B. Phase-charge duality of a Josephson junction in a fluctuating electromagnetic environment. Phys. Rev. Lett. 97, 096802 (2006).

    ADS 
    PubMed 

    Google Scholar
     

  • 20.

    Ergül, A. et al. Localizing quantum phase slips in one-dimensional Josephson junction chains. New J. Phys. 15, 095014 (2013).

    ADS 

    Google Scholar
     

  • 21.

    Cedergren, K. et al. Insulating Josephson junction chains as pinned luttinger liquids. Phys. Rev. Lett. 119, 167701 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • 22.

    Murani, A. et al. Absence of a dissipative quantum phase transition in Josephson junctions. Phys. Rev. X 10, 021003 (2020).


    Google Scholar
     

  • 23.

    Matveev, K. A., Larkin, A. I. & Glazman, L. I. Persistent current in superconducting nanorings. Phys. Rev. Lett. 89, 096802 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • 24.

    Koch, J., Manucharyan, V., Devoret, M. H. & Glazman, L. I. Charging effects in the inductively shunted Josephson junction. Phys. Rev. Lett. 103, 217004 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • 25.

    Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single Cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • 26.

    Nguyen, L. B. et al. High-coherence fluxonium qubit. Phys. Rev. X 9, 041041 (2019).


    Google Scholar
     

  • 27.

    Manucharyan, V. E. et al. Evidence for coherent quantum phase slips across a Josephson junction array. Phys. Rev. B 85, 024521 (2012).

    ADS 

    Google Scholar
     

  • 28.

    Kuzmin, R. et al. Quantum electrodynamics of a superconductor-insulator phase transition. Nat. Phys. (2019).

  • 29.

    Kou, A. et al. Simultaneous monitoring of fluxonium qubits in a waveguide. Phys. Rev. Appl. 9, 064022 (2018).

    ADS 

    Google Scholar
     

  • 30.

    Schuster, D. I. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • 31.

    Bell, M. T., Sadovskyy, I. A., Ioffe, L. B., Kitaev, A. Y. & Gershenson, M. E. Quantum superinductor with tunable nonlinearity. Phys. Rev. Lett. 109, 137003 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • 32.

    Douçot, B. & Ioffe, L. B. Physical implementation of protected qubits. Rep. Prog. Phys. 75, 072001 (2012).

    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • 33.

    Brooks, P., Kitaev, A. & Preskill, J. Protected gates for superconducting qubits. Phys. Rev. A 87, 052306 (2013).

    ADS 

    Google Scholar
     

  • 34.

    Nguyen, F. et al. Current to frequency conversion in a Josephson circuit. Phys. Rev. Lett. 99, 187005 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 35.

    Di Marco, A., Hekking, F. W. J. & Rastelli, G. Quantum phase-slip junction under microwave irradiation. Phys. Rev. B 91, 184512 (2015).

    ADS 

    Google Scholar
     

  • 36.

    Dolan, G. J. Offset masks for lift-off photoprocessing. Appl. Phys. Lett. 31, 337–339 (1977).

    ADS 

    Google Scholar
     

  • 37.

    Frunzio, L., Wallraff, A., Schuster, D., Majer, J. & Schoelkopf, R. Fabrication and characterization of superconducting circuit QED devices for quantum computation. IEEE Trans. Appl. Supercond. 15, 860–863 (2005).

    ADS 

    Google Scholar
     

  • 38.

    Chang, F. I. et al. Gas-phase silicon micromachining with xenon difluoride. In Proc. SPIE 2641, https://doi.org/10.1117/12.220933 (SPIE, 1995).

  • 39.

    Chu, Y. et al. Suspending superconducting qubits by silicon micromachining. Appl. Phys. Lett. 109, 112601 (2016).

    ADS 

    Google Scholar
     

  • Articles You May Like

    Latin America’s embrace of an unproven COVID treatment is hindering drug trials
    FAA publishes streamlined commercial launch regulations
    Decoding the Disinformation Machine
    Space Force plans big reveals on its first anniversary
    New Crew Safely Aboard the Space Station on This Week @NASA – October 16, 2020

    Leave a Reply

    Your email address will not be published. Required fields are marked *