Transporting and concentrating vibrational energy to promote isomerization

Nature
  • 1.

    Förster, T. Energiewanderung und Fluoreszenz. Naturwissenschaften 33, 166–175 (1946).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 437, 55–75 (1948).

    Article 

    Google Scholar
     

  • 3.

    Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Berggren, M., Dodabalapur, A., Slusher, R. E. & Bao, Z. Light amplification in organic thin films using cascade energy transfer. Nature 389, 466–469 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Kim, J. S., McQuade, D. T., Rose, A., Zhu, Z. G. & Swager, T. M. Directing energy transfer within conjugated polymer thin films. J. Am. Chem. Soc. 123, 11488–11489 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Kagan, C. R., Murray, C. B. & Bawendi, M. G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633–8643 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Crooker, S. A., Hollingsworth, J. A., Tretiak, S. & Klimov, V. I. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Corcelli, S. A. & Tully, J. C. Vibrational energy pooling in CO on NaCl(100): methods. J. Chem. Phys. 116, 8079–8092 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Zare, R. N. Laser control of chemical reactions. Science 279, 1875–1879 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Crim, F. F. Chemical dynamics of vibrationally excited molecules: controlling reactions in gases and on surfaces. Proc. Natl Acad. Sci. USA 105, 12654–12661 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Chadwick, H. & Beck, R. D. Quantum state-resolved studies of chemisorption reactions. Annu. Rev. Phys. Chem. 68, 39–61 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Utz, A. L. Mode selective chemistry at surfaces. Curr. Opin. Solid State Mater. Sci. 13, 4–12 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Juurlink, L. B. F., Killelea, D. R. & Utz, A. L. State-resolved probes of methane dissociation dynamics. Prog. Surf. Sci. 84, 69–134 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Crim, F. F. Vibrational state control of bimolecular reactions: discovering and directing the chemistry. Acc. Chem. Res. 32, 877–884 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Dünnwald, H. et al. Anharmonic vibration–vibration pumping in nitric oxide by resonant IR-laser irradiation. Chem. Phys. 94, 195–213 (1985).

    Article 

    Google Scholar
     

  • 17.

    Lau, J. A. et al. Observation of an isomerizing double-well quantum system in the condensed phase. Science 367, 175–178 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Chen, L. et al. The Sommerfeld ground-wave limit for a molecule adsorbed at a surface. Science 363, 158–161 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Dubost, H. & Charneau, R. Laser studies of vibrational energy transfer and relaxation of CO trapped in solid neon and argon. Chem. Phys. 12, 407–418 (1976).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Dubost, H. & Charneau, R. Role of vibrational energy migration upon V→V transfer in matrix-isolated CO. Chem. Phys. 41, 329–343 (1979).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Legay-Sommaire, N. & Legay, F. Observation of a strong vibrational population inversion by CO laser excitation of pure solid carbon monoxide. IEEE J. Quantum Electron. 16, 308–314 (1980).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Legay-Sommaire, N. & Legay, F. Analysis of the infrared emission and absorption spectra from isotopic CO molecules in solid α-CO. Chem. Phys. 66, 315–325 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Bergman, R. C., Homicz, G. F., Rich, J. W. & Wolk, G. L. 13C and 18O isotope enrichment by vibrational energy exchange pumping of CO. J. Chem. Phys. 78, 1281–1292 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Rich, J. W. & Bergman, R. C. C2 and CN formation by optical pumping of CO/Ar and CO/N2/Ar mixtures at room temperature. Chem. Phys. 44, 53–64 (1979).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Serdyuchenko, A. et al. Isotope effect in Boudouard disproportionation reaction in optically pumped CO. Chem. Phys. 363, 24–32 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Heidberg, J., Suhren, M. & Weiss, H. Growth of CO multilayers on the monolayer adsorbate CO/NaCl(100): a high resolution Fourier-transform infrared study. J. Electron. Spectros. Relat. Phenom. 64–65, 227–234 (1993).

    Article 

    Google Scholar
     

  • 27.

    Chen, L. et al. Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution. Opt. Express 26, 14859–14868 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Chen, L. et al. Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science. Acc. Chem. Res. 50, 1400–1409 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Nesbitt, D. J. & Field, R. W. Vibrational energy flow in highly excited molecules: role of intramolecular vibrational redistribution. J. Phys. Chem. 100, 12735–12756 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Chang, H. C., Richardson, H. H. & Ewing, G. E. Epitaxial growth of CO on NaCl(100) studied by infrared spectroscopy. J. Chem. Phys. 89, 7561–7568 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Morse, P. M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Vegard, L. Structure and luminosity of solid carbon monoxide. Z. Phys. 61, 185–190 (1930).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Jiang, G. J., Person, W. B. & Brown, K. G. Absolute infrared intensities and band shapes in pure solid CO and CO in some solid matrices. J. Chem. Phys. 62, 1201–1211 (1975).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Dai, D. J. & Ewing, G. E. Vibrational overtone spectroscopy and coupling effects in monolayer CO on NaCl(100). Surf. Sci. 312, 239–249 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Articles You May Like

    What new COVID variants mean for schools is not yet clear
    Deborah Birx Faces Fallout For Role On Trump Covid-19 Coronavirus Task Force
    The U.S. remains important in the oil market, even if Biden is less vocal than Trump: UAE energy minister
    ‘Inspired choice’: Biden appoints prominent sociologist to top science post
    WHO Says Pfizer-BioNTech Covid-19 Vaccine Is Safe For The Elderly After Norway Questioned Its Role In Numerous Deaths

    Leave a Reply

    Your email address will not be published. Required fields are marked *